Colles de Maths - semaine 1 - MP-MP* Lycée Aux Lazaristes

Julien Allasia - ENS de Lyon

Choses à retenir

- Retenir la méthode du $u_{n+1}^{\beta} u_n^{\beta}$ pour les suites récurrentes (accompagnée d'une intuition discret/continu), et conclure avec le théorème de Cesàro.
- Pour les suites définies implicitement, faire des dessins, étudier la monotonie pour aboutir à la convergence, puis déterminer la limite et le développement en réinjectant successivement la suite dans son équation.
- Bien comprendre l'intérêt de la compacité : avoir des limites en extrayant, transformer des inf en min, des sup en max, des inégalités larges en inégalités strictes...

Suites numériques

Exercice 1 (**) Montrer que pour tout entier $n \ge 0$, l'équation $\tan x = x$ admet une unique solution dans l'intervalle $\left[n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2}\right]$, notée x_n . Donner un développement asymptotique à l'ordre $\frac{1}{n}$ de x_n .

Exercice 2 (**) Montrer que l'équation $e^x = x^n$ admet deux solutions strictement positives $u_n < v_n$ pour n assez grand, et donner un développement asymptotique à deux termes de u_n .

Exercice 3 (**) Montrer que pour tout entier $n \ge 2$, l'équation $x^n + x - 1 = 0$ admet une unique racine positive notée x_n . Donner un développement asymptotique à deux termes de x_n .

Exercice 4 (*) Soit $\alpha \in \mathbb{R}_+^*$. Soit (u_n) la suite définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{u_n^{\alpha}}$.

Donner un équivalent de u_n .

Indication : On pourra considérer $u_{n+1}^{\beta} - u_n^{\beta}$ pour $\beta \in \mathbb{R}_+^*$.

Topologie

Exercice 5 (*) Soit E un espace vectoriel normé (ou métrique). Soit D une partie dense de E. Soit $f: D \to \mathbb{R}$ une application continue qui admet un prolongement continu à $D \cup \{x\}$ pour tout $x \in E$. Montre que f admet un prolongement continu sur E.

Exercice 6 (*) Soit E un espace vectoriel normé (ou un espace métrique). Soit A et B deux parties non vides disjointes de E. On définit la distance de A à B par

$$d(A,B) = \inf_{(x,y) \in A \times B} d(x,y).$$

- 1. On suppose A fermé. A-t-on d(A, B) > 0? Et si l'on suppose B fermé? réduit à un point? compact?
- 2. Donner des conditions suffisantes sur A, B ou E pour qu'il existe $x \in A$ et $y \in B$ tels que d(A, B) = d(x, y).
- 3. Si A et B sont fermés, montrer qu'il existe deux ouverts disjoints U et V tels que $A \subseteq U$ et $B \subseteq V$.

Exercice 7 (**) Soit E un espace vectoriel normé. Montrer l'équivalence des propriétés suivantes :

- (i) E est de dimension finie.
- (ii) La boule unité fermée de E est compacte.
- (iii) La sphère unité de E est compacte.
- (iv) De toute suite bornée de E, on peut extraire une sous-suite convergente.

 $Indication: S'inspirer\ du\ cas\ où\ E\ est\ un\ espace\ préhilbertien.$

Exercice 8 (**) Soit K un compact (dans un espace vectoriel normé ou métrique) et $f: K \to K$ telle que

$$\forall x \neq y \in K, \ d(f(x), f(y)) < d(x, y).$$

Montrer que f possède un unique point fixe α et que si $x_0 \in K$, $x_{n+1} = f(x_n)$, $(x_n)_{n \ge 0}$ converge vers α .